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Determination of Green’s Function Matrix for
Multiconductor and Anisotropic Multidielectric

Planar Transmission Lines:
A Variational Approach

FRANCISCO MEDINA AND MANUEL HORNO, MEMBER, IEEE

Abstract —In this paper, a set of simple reerrrrence formulas to evaluate

the Green’s function matrix for a generic multiconductor and mtdtidielec-

tric planar transmission system with arbitrary rectangular boundary condi-

tions is obtained. Combining these formulas with the variatiormf technique

in the spectral domain, two useful algorithms to calculate the capacitance

matrix of a very wide range of practicaf configurations are proposed. Upper

and lower bounds on mode capacitances are obtained by using both

afgontbms. A number of practical structures have been analyzed and their

most interesting features discussed, The method is very versatile and can

handle a large class of MIC configurations, no matter how complex the

planar structure.

I. INTRODUCTION

A S IS WELL KNOWN, the quasi-TEM approxima-

tion is reasonable in many cases if the cross-sectional

dimensions of inhomogeneous transmission lines are much

smaller than the wavelength to be used. Therefore, the

calculation of the characteristic mode capacitances of

planar transmission lines is useful for the design of MIC

structures. The study of propagation parameters of such

structures has been achieved by using several methods,

such as mapping theory [1] and finite differences [2]. One

of them, involving variational techniques in the spectral

domain, has been successfully applied to solve a great

number of planar configurations [3]–[12]. This is a very

efficient numerical technique easily applicable to many

microstrip line configurations. This method requires the,

analytical determination of the Green’s function of the

structure in question in the spectral domain. Usually the

conductor strips are located at only one of the dielectric

interfaces. However, the design flexibility y has been in-

creased introducing additional conductors on interfaces

different from the one on which the original strips are

situated [11]. A modification of the spectral-domain tech-

nique which can handle this kind of structure was reported

by Itoh et al. [11], [12] introducing a Green’s function
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matrix in the spectral domain for characterizing the config-

uration.

The Green’s function is generally calculated for each

particular configuration. However, when multilayered corl-

figurations are considered, this task becomes very tedions.

This problem has been considered by a few authors

[13] -[16]. Recently, the authors have studied this problem
for open structures [17], and shielded structures with strips

at only one interface [18]. In this paper, we show a new

simple recurrence formula to obtaifi the Green’s function

matrix for a generic rectangular multilayered anisotropic

structure having arbitrary boundary conditions at the side

and at the upper and lower walls, and several strips located

on more than one interface (see “Fig. 1). Therefore, the

formulation in this paper is quite general and requires no

structural symmetry. Nevertheless, the symmetry can be

taken into account to exploit its advantages (so that even

and odd modes can be considered). The study of this

generic configuration provides a method to calculate the

quasi-TEM parameters of a very wide range of practical

lines including lines with conductors in several interfaces.

To illustrate the power of the method, several examples

of structures with conductors at only one interface and at

several interfaces are included. The computation of the

mode capacitances of t,hese structures has been achieved

using two stationary expressions which provide upper and

lower bounds on their exact values [4]–[6]. Very accurate

results have been obtained by using appropriate trial func-

tions to approximate the surface charge density on the

conductors (lower bounds) or the potential function at the

interfaces where these are situated (upper bounds). In this

work, a unified variational formulation for determining the

line capacitances of arbitrary planar structures is shown.

The number of iso/anisotropic dielectric layers and the

distribution of the conductor strips are no longer obstacles

for the analysis.

II. STATEMENT OF THE PROBLEM

Consider a system of planar multiconductor transmis-

sion lines in a multilayered dielectric region as shown in

Fig. 1. The system is uniform in the direction perpendicu-
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Fig. 1 Cross section of a generic multiconductor and multidielectric

planar transmission system with rectangular boundary conditions.

lar to the x – y plane. An arbitrary number of perfectly

conducting strips are embedded in an arbitrary number Nd

of dielectric layers. With the object of sirnplif ying the

computation of the capacitances per unit length, the strips

will be assumed negligibly thin. The upper and lower liinits

of the rectangular configuration can be considered to be

ground plates, magnetic walls, or open boundaries (that is,

interfaces with a dielectric region extending to y = + co).

The sidewalls (X= O and x = a) can be electric or magnetic

walls. Moreover, we will assume lossless and uniaxial an-

isotropic dielectric layers with no tilted optical axis: there-

fore, the permittivity of each layer is given by the following

tensor:

It is evident that most useful configurations appearing in

practice are particular cases of this generic system.
The objective is to determine the capacitance matrix of

the rnulticonductor transmission-line system, or the mode

capacitances if the symmetry of the structure permits us to

define these modes. In this paper, we will use a variational

technique in the spectral domain to achieve the corre-

sponding calculations. The application of this method re-

quires the knowledge of the spectral Green’s function

matrix for the problem structure. The derivation of a set of

very simple recurrence formulas for the elements of the

Green’s matrix is performed in the following section.

III. ANALYSIS—THE GREEN’S FUNCTIONS MATRIX

If we assume the quasi-TEM approximation to be valid,

our problem reduces to solving the Laplace’s equation in

the x – y plane subject to the appropriate boundary condi-

tions. Instead of working in the x – y plane, we will work

in the discrete Fourier domain because significant ad-

vantage is gained: Green’s function convolution integrals

are converted into algebraic products. The boundary con-

ditions at the vertical sidewall: (x= O and x = a) are

satisfied via the adequate definition of the discrete Fourier

transform (DFT) [18]. In the spectral domain, Laplace’s

equation is written as follows:

b--ktwi(ny)=o‘=17”--Nd‘2)
where km is the Fourier variable and &i( h, y) is the DFT

of the potential in the i th layer. The solution of (2) can be

written in the following way:

-?j(~, ~j-l).sinh[yj(~-~i)]}, i=l!”””, ~. (3)

where

hi= ~ H, (H, = thickness of kth dielectric layer)
k=l

(4a)

Y;= +2q)1’2 (4b)

~i(n)=sinh[y~llil, ,. ... N.i=l (4C)

,Applying the boundary conditions at the interfaces and
letting iii (n) be the DFT of the surface charge density on

the i th interface, we can obtain the following relation:

‘ii(n) =~i,i-l(n)”ii( n>hi-l) +~j, j(n)”~j(n,h

‘~i,i+l(n)”~i+l( n,hi+l), ,“
i=l

where

~i+l,i(n) =~i,i+l(n)

=. eO.k~.c;;l. [(sinh k~H~~ 1;

~i,i(n) =~O”k.. (~~l. coth(k~.H~J1)

+’:,”CO’W.”%J}

)
“ , Nd (5)

I‘1 (6a)

(6bj

where the equivalent heights and permittivities [4]–[6], [18]

are defined as follows:

‘iq=Hi(t*i/c*i)l/’xx YY
(7a)

‘L= ki”’w’ (7b)

Now, we will consider M interfaces with conductor

strips. We let ~~(n) (~ =1,. .0, M) be the DFT of the

potential function at these interfaces, and ~~(n) (k=

1,. . . , M) be the DFT of the corresponding surface charge
density. These quantities are related through the Green’s
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function matrix in the following way:

Vk(rz)= f Gk,(rz)”pl(n), k,l=l,.. ” , M (8)
[=1

where M is the number of interfaces with conductor strips.

Equivalently

@k(n)= 5 Zkl(n)”n(n), k,l=l,... ~~ (9)
1=1

where the matrices [ (%~,] and [ ~~1] are obviously related in

the following way:

[z,,(n)] = [G,,(n)]-’. (lo)

The elements of the [~~1] matrix can be easily obtained

from (5). Noting that 61(n) = j5z(n ) at the interfaces having

conductor strips and 6,( n)= O at the rest of the interfaces,

it is not difficult to realize that only the diagonal elements

(~~~) and the ones beside them (~~, ~+1 and ~~, ~_l) are

nonzero ones. We can then write

~k(~)=~k, k-l(~) ”~k-l(~)+~k, k(~)”fik(~)

+Z ~,~+l(n).V~+l(n), k=l,. . .,M. (11)

Moreover, the symmetry of the matrix [~~ ~(n)] [17] im-

plies the symmetry of [@~, ~(n)]. It is then e~dent that it is

only necessary to evaluate the %~, ~ (k= 1,. ... M) and

L ~,~_l (k=2,..., M) elements, resulting in reduction of

computation time.

Lastly, a simple algebraic manipulation of (5) permits us

to find the following recurrence expressions for the ele-

ments of the [ fi~l] matrix: calling n ~ the number of

dielectric layers underneath the k th interface with conduc-

tor strips and that n~ = n~– n~_~l, n;= n~+l– n~, p =

n~_ ~, q = n~+ ~, the elements of [L~,] can be expressed in

the following way:

Lk, k= A-;~ + @’ – ~.,,.,, k=l,... , M (12)

L k,k-l=ep~ k=2,... , M (13)

where ~~~, B:{, and ~[i are defined by the following

recurrence expressions:

~i=t?p+l,p+l (14a)

~:=&+l,p (14b)

B;= gq-l, q_l (14C)

(15a)

(15b)

(15C)

where ~i, ~( n ) are defined in (6).
Equations (12)–(15) are valid from k = 2 to k = M – 1.

The boundary conditions at lower (i= O) and upper (i=

935

IVd) limit walls affects to the elements of [~~1] correspond-

ing to k = 1 and k = M. However, (12), (13), (14b), and

(15) are independent of these boundary conditions. In fact,

the boundary condition at the lower interface (i= O) is

taken into account through ~~. Likewise, the boundary

condition at the upper interface (i = IVd) will be taken into

account via fi~. Next, we show the corresponding expres-

sions for ~~ and B~ when lower and upper limit walls are

either electric walls, magnetic walls, or open boundaries.

a) Lower interface (i = O)

electric wall:

magnetic wall:

(16a)

(16b)

open boundary:

(16c)

(the superscript “O” refers to the dielectric underneath the

first layer).

b) Upper interface (i = NJ

electric wall:

[sinh(2k.H~)]’1

open boundary:

B~ = ~.~,_l,~~_l – k.

[’~:”(sinh(knH2))-112.—
c~j+l+&’’. coth(k#f~)

(the superscript “N~ + 1“ refers to the dielectric

Ndth layer).

(17a)

(17b)

(17C)

over the

This way, (12)–(17) provide a set of recurrence formulas 1.0

obtain the elements of the [ ~kl] matrix, which can be

programmed easily in a digital computer. Finally, the

Green’s function matrix is obtained by inverting the [~~1]

matrix. Introducing these expressions in the already exist-
ing programs, without further modifications, the character-

istic parameters of arbitrarily complicated configurations

can be computed by using moment method or variational

techniques. In the following section, two useful variational

expressions are introduced, and some practical examples

will be shown later.
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IV. VARIATIONAL EXPRESSIONS

The electrostatic energy per unit length stored in a

structure as shown in Fig. 1 can be expressed, by using

Parseval’s theorem, in the following way: ‘.. .,,

u,=+ ~ f pk(n). vk(n). (18)
n=lk=l

From (8), (9), and (18), we can obtain two expressions

for the electrostatic energy per unit length as a function of

the surface charge density on the strips or as a function of

the potential at these interfaces

If we determine the unknowns ~k(n) or ~k(n ), the

energy can be evaluated exactly. This is not possible in

general cases, but the stationary nature of (19a) and (19b)

allows us to get very accurate results by applying the

Rayleigh-Ritz’s optimization procedure [11], [12] and

choosing a proper set of trial functions to approximate

~k(x) or Vk(x). On the other hand, (19a) and (19b) permit
us to obtain upper and lower bounds on true values of the

mode capacitances for a wide variety of practical struc-

tures. For instance, consider the coupled strips with tuning

septums studied by Itoh et al. [11]. As is well known, the

symmetry of this structure permits us to define two modes

of propagation: an even mode and an odd mode. From

(19), we can write two variational expressions for the even-

and odd-mode capacitances in the following way:

(20a)

(20b)

where Q (charge on the strips) and V (potential of the

strips) are usually considered equal to unity. Both varia-
tional expressions provide upper bounds on their exact
values when trial functions for p~ 0 and V~’0 are used. So,

(20a) leads to lower bounds on the true value of Ce,~ and

(20b) leads to upper bounds on it. This way, through an

appropriate choice of trial functions, we can obtain accu-

rate results and their margin of error. All these consider-

ations have been taken into account to write computer

programs to analyze a great number of structures. These

programs were rigorously checked comparing our results

for simple configurations with those obtained by conformal

mapping. Some practical examples will be shown in the

next section.

TABLE I

CAPACITANCE MATRIX OF ASYMMETRIC COUPLED STRIPS ON

SAPPHIRE SUBSTRATE AND IN VACUUM (a) OPEN STRUCTURE

AND (b) COVERED STRUCTUICE

(a) Wylh = 1.

I-wl+ S-I--W*4 Sjh = 2.

W1/h C1lIE.
%2

/E.
C121 ‘m

,;; ,/E. C;21 c. C;21 &

0.50 15.869 22.179 -1.437 2.357 3.096 -0.497

1.25 25.2d7 22.185 -1.558 3.437 3.103 -().579

2.00 34.136 22.185 -1.599 4.380 3.105 -0.519

Sllh ~,o
C1l IES C2JG C,,,/& .ll IL $21 E. (:;21 c.

0.50 16.169 22.767 -1.238 2.720 3.780 -0.252

1.25 25.955 22.771 -1.295 4.2S9 3.781 -().266

2.00 35.420 22.771 -1.299
i

5.794 3.781 -(1 .266

V. NUMERICAL RESULTS

Combining the general formulas presented in (19) or (20)

with (12)–(17) proposed in this work and applying subse-

quently the Rayleigh-Ritz’s procedure in a similar way to

the one reported in [4]–[6], [11], numerical data have been

generated on the quasi-static parameters of several signifi-

cant structures.

Before generating these numerical results, a set of ade-

quate basis functions was selected. Different choices of

basis functions were compared, and, finally, we selected a

set of functions similar to the one reported in [18], which

includes the nature of the charge distribution and the

potential function near the edges of the strips. The method

was checked with numerical and graphic results appearing

in the literature [7]–[12], and a firm agreement was found.

Next, we will illustrate the theory with some practical

examples.

Example 1

Let us consider the pair of asymmetrical coupled micro-

strips touching a sapphire dielectric slab over a conducting

plane, as is shown in Fig. (a) of Table I. The capacitance

matrix is easily obtained by evaluating the electrostatic

energy per unit length of this configuration when: a)

conductor 1 has charge Q and conductor 2 has charge zero,

b) conductor 2 has charge Q and conductor 1 has charge

zero, and c) both conductors have charge Q. Normalized

elements of the capacitance matrix (obtained for several

dimensions) Ci~/CO are shown in this table for (a) open

and (b) covered versions. The effects of the sidewalls are

neglected when a/h >>1. The capacitance matrix in
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Fig. 2. Even- and odd-mode impedances and phase velocities for sym-

metrycaf coupled strips on sapp”hire-boron nitride substrate. Matching

points for mode phase velocities are marked with arrows.

vacuum ( Ci~.), when the dielectric is removed, has also been

tabulated.

Example 2

This is another example of an MIC structure having

conductor strips at only one interface, but, in this case, two

dielectric layers are involved (see Fig. 2): a pair of symmet-

rical coupled strips on a double layer sapphire-boron nitride

substrate is considered. Even- and odd-mode impedances

and normalized phase velocities for two values of S versus

the h ~/h ratio are represented. It must be noted that even-

and odd-mode phase velocities can be equalized by varying

the h ~/h ratio. As is well known, this fact is important in

order to improve the directivit y of MIC directional cou-

plers.

Example 3

In this case, we consider two structures with conductor

strips at two different interfaces: the broadside edge-

coupled suspended microstrip lines and broadside edge-

coupled inverted microstrip lines (see Figs. 3 and 4,

respectively). However, because of their symmetry, both

structures admit four independent modes of propagation:

even–even (ee), even–odd (co), odd–even (oe), and

odd–odd (00) modes. Each of these modes can be treated
as independent configurations having only one strip at

only one interface by imposing the suitable boundary

conditions at the symmetry planes. So, we must evaluate

only the ~ II element of the Green’s function matrix to

analyze the structure in question. Propagation. parameters

versus strip width have been drawn in Figs. 3 and 4 for

I~z(n) ‘ee
m = ee, eo, oe, oo

.$l
m

------- symmetry PI ane
– .90

Z50 – . .

.,” “

c
200 — – . 8cI

— a —e- . . . . -

,,-,

,., – .70
C;x- 5.12 i c~y- 3.40 (pBt+)

I 00

b---- ~~
z . 6S. . . . . . . normal Ized phase velocities

z
eo

00

50 “$ :::-------
----------------- .60------------- ------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . --------5
c

r , I , 1 , 1 , I , I
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Fig. 3. Mode impedances and phase velocities versus strip width for

broadside edge-coupled suspended strips on boron nitride substrate.
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Fig. 4. Mode impedances and phase velocities versus strip width for

broadside edge-coupled inverted strips on boron nitride substrate.
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TABLE II

UPPER ( – ) AND LOWER(+) BOUNDS ON MODE IMPEDANCES FOR

SINGLE AND COUPLED SUSPENDED MICROSTRIPS WITH TUNING
SEPTUMS ON SAPPHIRE SUBSTRATE

(a) (b)

COUPLED PAIR

W/h Swlh z (f-o + z m - S [h Z,(G) + Ze k-l) - Z.m

0.2 200.3 200.5 73.70

0.2 65.23 65.27 34.99 35.02

1.0 33.40 33.42 0.6 61.41 61.47 42.11 42.11

2.0
1.0 58.59 58.69 45.44 45.45

0.2 124.3 125.3 40.09 40.12

b.o 74.13 7L.47 0.6 115.5 116.3 50.55 50.57

1.0 107.3 107.9 56.04 56.08
L

SAPPHIRE SUBSTRATE EVEN MODE ODD MODE

+ Upper bo,,nd algorithm

- Lover bound algorithm

each of these structures considering a boron nitride sub-

strate.

Example 4

Two interesting practical configurations having conduc-

tor strips at two interfaces are single and coupled sus-

pended rnicrostrip lines with tuning septums (see Figs. (a)

and (b) in Table II). These configurations have been

analyzed by Itoh and Hebert in [11] considering an iso-

tropic substrate. In order to show the accuracy of the

method in this paper, characteristic impedances for single

and coupled configurations have been calculated by using

the variational expressions for the mode capacitances given

in (20a) and (20b). Results obtained with both algorithms

have been tabulated in Table II. It is apparent that upper

bounds on mode capacitances(+) lead to lower bounds on

mode impedances and vice versa. Differences between data

obtained with each algorithm are always less than 1 per-

cent. Nevertheless, the lower bound algorithm is recom-

mended because it spends less computation time and it

provides more accurate results. On the other hand, Figs. 5

and 6 show impedances and normalized phase velocities

versus slit width (SW), respectively. It must be emphasized

that even-mode parameters can be tuned by changing SW

over a wide range of values, whereas the odd-mode ones

are only lightly affected. Moreover, it is clearly seen that,

at certain values of the slit width, phase velocities of the

even and odd mode coincide. As stated above, this phe-

nomenon is useful for directional coupler applications.

EVEN MODE IMPEDANCES

200 -

150

—a~ x
~* - 5.I2 ; Cty - 3.40 (PBN)

xx

a/h = 20. ; b/h - 3. ; t/h-10,

W/h-l.

100

50

S/h=. Z
r
J

1 1 1 1 I , 1 I ,

z, 4. 6. 8. 10, 12. 14. 16. 18. SJh

Fig. 5. Even- and odd-mode impedances for coupled suspended strips
with tuning septums on boron nitride substrate versus slit width (SW)

taking the distance between the strips (s) as parameter.

;

Fig. 7 shows the influence of the substrate anisotropy on

the characteristic parameters. Once again we can decrease

the difference between even- and odd-mode phase veloci-

ties: in this case it is clear that substrates with a high

c&/c~Y ratio can improve the directivity of directional

couplers designed with this configuration.

Finally, an interesting application of the method de-

scribed in this paper is the study of the configurations of

which the dielectric medium has a variable dielectric con-

stant with an index gradient in the y-direction [16]. Fig. 8

illustrates the variation of the characteristic parameters for

an exponential variation of the dielectric constant for a

single suspended strip with tuning septums. In order to

apply the theory, the dielectric thickness was subdivided

izito N equal intervals of constant permittivity. To obtain

curves in Fig. 8, N = 30 was chosen: that is quite sufficient

if no abrupt variation is considered. In this case, nonuni-

form discretization is recommended.

Before concluding this section, let us note that, although

only a few simple cases have been selected to show the

applications of the method, arbitrarily complicated planar

configurations can be analyzed without increasing the com-

plexity of the computer programs.
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e :x= 5.ii ~ E;y= 3.4 (I!B,N,)

/=20. ;b*3. ,. f=lo. ;h=f.

}
I t I 1 1 I 1 1 1

2. 6. 10. 14. 18. Sw

Fig. 6. Even- and odd-mode phase velocities for coupled suspended

strim with tuning semums on boron nitride substrate versus slit width

(SW”) ta@g S m-prrr~meter. Matching poirits for mode phase velocities
are marked with arrows.

By using the trial functions reported in [18], typical

computation time was found to be 2–3 s (CPU time) per

CiJ coefficient on a VAX-11/780 computer. When the

number of boundaries increases, CPU time also does by

approximately 0.5 s per added dielectric layer.

VI. CONCLUSIONS

In this paper, a set of simple and useful recurrence

formulas to obtain the Green’s function matrix associated

with a rnulticonductor multidielectric planar transmission

system with rectangukir generic boundary conditions tire

presented. These formulas have been combined with the

variational approach in the spectral domtin previously

used to analyze particular configurations, and, in this, way,

a unified formulation to solve a very wide range of rnicro-

strip-like transmission lines embedded ifi anisotropic sub-
strates has been obtained. Moreover, two stationary ex-

pressions for the electrostatic energy per unit length ,have

been proposed, each of them leading to an independent

computational algorithm. In many cases, results obtained

by using these algorithms are upper and lower bounds on

the exact values of the mode capacitances. So, through an

9}9
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Fig. 7. )3ffect of the dielectric anisotropy on characteristic parameters of
Coupled suspended sttips with tuning septums. Phase velocities of even
and odd modes can be matched with highly anisotropic substrates (such

as boron nitride).
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adequate choice of trial functions, we can get very accurate

design data, and, moreover, it is possible to known the

margin of error of them. This way, reliability of computed

values is guaranteed.
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