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Determination of Green’s Function Matrix for
Multiconductor and Anisotropic Multidielectric
Planar Transmission Lines:

A Variational Approach

FRANCISCO MEDINA aAND MANUEL HORNO, MEMBER, IEEE

Abstract —In this paper, a set of simple recurrence formulas to evaluate
the Green’s function matrix for a generic multiconductor and multidielec-
tric planar transmission system with arbitrary rectangular boundary condi-
tions is obtained. Combining these formulas with the variational technique
in the spectral domain, two useful algorithms to calculate the capacitance
matrix of a very wide range of practical configurations are proposed. Upper
and lower bounds on mode capacitances are obtained by using both
algorithms. A number of practical structures have been analyzed and their
most interesting features discussed, The method is very versatile and can
handle a large class of MIC configurations, no matter how complex the
planar structure.

I. INTRODUCTION

S IS WELL KNOWN, the quasi-TEM approxima-

tion is reasonable in many cases if the cross-sectional
dimensions of inhomogeneous transmission lines are much
smaller than the wavelength to be used. Therefore, the
calculation of the characteristic mode capacitances of
planar transmission lines is useful for the design of MIC
structures. The study of propagation parameters of such
structures has been achieved by using several methods,
such as mapping theory [1] and finite differences [2]. One
of them, involving variational techniques in the spectral
domain, has been successfully applied to solve a great
number of planar configurations [3]-[12]. This is a very
efficient numerical technique easily applicable to many
microstrip line configurations. This method requires the
analytical determination of the Green’s function of the
structure in question in the spectral domain. Usually the
conductor strips are located at only one of the dielectric
interfaces. However, the design flexibility has been in-
creased introducing additional conductors on interfaces
different from the one on which the original strips are
situated [11]. A modification of the spectral-domain tech-
nique which can handle this kind of structure was reported
by Itoh er al. [11], [12] introducing a Green’s function
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matrix in the spectral domain for characterizing the config-
uration.

The Green’s function is generally calculated for each
particular configuration. However, when multilayered con-
figurations are considered, this task becomes very tedious.
This problem has been considered by a few authors
[13]-[16]. Recently, the authors have studied this problem
for open structures [17], and shielded structures with strips
at only one interface [18]. In this paper, we show a new
simple recurrence formula to obtain the Green’s function
matrix for a generic rectangular multilayered anisotropic
structure having arbitrary boundary conditions at the side
and at the upper and lower walls, and several strips located
on more than one interface (see Fig. 1). Therefore, the
formulation in this paper is quite general and requires no
structural symmetry. Nevertheless, the symmetry can be
taken into account to exploit its advantages (so that even
and odd modes can be considered). The study of this
generic configuration provides a method to calculate the
quasi-TEM parameters of a very wide range of practical
lines including lines with conductors in several interfaces.

To illustrate the power of the method, several examples
of structures with conductors at only one interface and at
several interfaces are included. The computation of the
mode capacitances of these structures has been achieved
using two stationary expressions which provide upper and
lower bounds on their exact values [4]-[6]. Very accurate
results have been obtained by using appropriate trial func-
tions to approximate the surface charge density on the
conductors (lower bounds) or the potential function at the
interfaces where these are situated (upper bounds). In this
work, a unified variational formulation for determining the
line capacitances of arbitrary planar structures is shown.
The number of iso/anisotropic dielectric layers and the
distribution of the conductor strips are no longer obstacles
for the analysis.

II. STATEMENT OF THE PROBLEM

Consider a system of planar multiconductor transmis-
sion lines in a multilayered dielectric region as shown in
Fig. 1. The system is uniform in the direction perpendicu-
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Fig. 1 Cross section of a genenc multiconductor and multidielectric
planar transmission system with rectangulat boundary conditions.

lar to the x—y plane An arbitrary number of perfectly
conducting strips are embedded in an arbitrary riumber N,
of dielectric layers. With the object of 51mphfy1ng the
computation of the capacitances per unit length, the strips
will be assumed neghg1bly thin. The upper and lower liinits
of the rectangular configuration can be considered to be
ground plates, magnetic walls, or open boundariés (that is,
interfaces with a dielectric region extending to y = 4+ o).
The sidewalls (x = 0 and x = a) can be electric or magnetic
walls. Moreover, we will assume lossless and uniaxial an-
isotropic dielectric layers with no tilted optlcal axis: there-
fore, the permittivity of each layer is given by the following
tensor;

. e o N |
€,=¢€, 0 x| i=1,--+,N,. (1)
vy

It is evident that most useful conf1guratlons appearing in
practlce are particular cases of this generic system.

The objective is to détermine the capacitance matrix of
the miulticonductor transmission-line system, or the mode
capacitances if the symmetry of the structure permits us to
define these modes. In this paper, we will use a variational
techniqué in the spectral domain to achiéve the corre-
sponding calculations. The application of this method re-
quires the knowledge of the spectral Green’s furiction
matrix for the problem structure. The derivation of a set of
very simple recurrence formulas for the elements of the
Green’s matrix is performed in the following section.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

III. ANALYSIS—THE GREEN’S FUNCTIONS MATRIX

- If we assume the quasi-TEM approximation to be valid,
our problem reduces to solving the Laplace’s equation in
the x—y plane subject to the appropriate boundary condi-
tions. Instead of working in the x- y plane, we will work
in the discrete Fourier domain because significant ad-
vantage is gained: Green’s function convolution integrals
are converted into algebraic products. The boundary eon-
ditions at the vertical sidewalls (x=0 and x = a) are
satisfied vid. the adequate definition of the discrete Fourier
transform (DFT) [18). In the spectral domain, Laplace’s
equation is written as follows:

d2 g2
dy? §

where k,, is the Fourier variable and ¢,(, y) is the DFT
of the potentlal in the ith layer. The solution of (2) can be
written in the following way:

ﬁ{&”’("’ h;)-sinh [y (y = k)]

:’”‘)}qb(ny) 0, i=1,-

Yy

(2)

.’Na'

&’i("aY) =

—&,(n,hy_y)sinh [vi(y )]}, i=1,--,N, (3)

where.

thickness of k th dielectric 1ayer)

(42)
vi=k(esi/en)” (4b)
A, (n)—smh[yn H], -+, N. (4c)

Applying the boundary condltlons at the interfaces and
letting 6,(n) be the DFT of the surface charg_e density on
the ith interface, we can obtain the following relation:

&‘i(n) = gi,i-l(”)'&’i(”a hi—1)+gi,}(n)"i’i(n, hi)
+gi,i+1(n)'&’i+1(n>hi+1)’ i=1,---

(Hkv=

= Z H,
k=1

i=1

N, (5)
where
Zr1i(n) = F 101 ()
=€y k et [smh anei;l)]
g,i(n) =eo ks { €t cothi(k, Hi)

+<i -coth(k -Hi )}

-1

(6a)

(6b)
where the €quivalerit heights and permittivities [4]-[6], [18]
are defined as follows:

Hl,=H,(ex/e)” (7a)
e, = (exi-ex)”. (7b)

Now, we will consider M interfaces with conductor
strips. We let Vi (n) (k 1,-+-, M) be the DFT of the
potential function at these 1nterfaces, and p,(n) (k=
1,---, M) be the DFT of the corresponding surface charge
density. These quantities are related through the Green’s
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function matrix in the following way:

I~/k("’)=IL:_‘,l(;/d(”)'f)/(n)s k,l=1,---,M (8)

where M is the number of interfaces with conductor strips.
Equivalently

ﬁk(n)=l§1ik1(n)-171(n), k,1=1,--,M (9)

where the matrices [G,] and [L,,] are obviously related in
the following way:

[Lk/(")} = [le(”)]_l- (10)

The elements of the [I~,k,] matrix can be easily obtained

from (5). Noting that ,(n) = p,(n) at the interfaces having

conductor strips and §,(n) =0 at the rest of the interfaces,

it is not difficult to realize that only the diagonal elements

(L,,) and the ones beside them (z‘k,k+1 and I:k,k—l) are
nonzero ones. We can then write

5e(n) = Ly o 1(n) Vi_s(n)+ Ly (n) F(n)
+I:k,k+1(n)'Vk+1(n)’ k=1,---, M. (11)

Moreover, the symmetry of the matrix [G~k, ;(n)] [17] im-
plies the symmetry of [_?k’ ((n)]. It is then evident that it is
only necessary to evaluate the i,k’ « (k=1,---,M) and
L k. k-1 (Kk=2,---, M) elements, resulting in reduction of
computation time.

Lastly, a simple algebraic manipulation of (5) permits us
to find the following recurrence expressions for the ele-
ments of the [L,,] matrix: calling n, the number of
dielectric layers underneath the kth interface with conduc-
tor strips and that njy=n,—n,_,, n{=n, ,—n,, p=
My_1, 4 =N, the elements of [L,,] can be expressed in
the following way:

Ly =A%+ B~ k=1,---,M (12)

gnk,nk7
Ly j1=Cr, k=2,---,M (13)

where A7, B¢, and C* are defined by the following
_ recurrence expressions:

A=ty (140)
CW'I]c~=g‘p+1,p (14b)
Ellc=gq—1,q—1 (140)

T s _ §3+,.p+1~1 (153)
k ptj.ptj A1
C~',{= _ gpﬂ,ptj:l'él{—l (15b)
At
5 Ba-jiq-it1
Bi=28, ,4-,~ TRt (15¢)

where g; (n) are defined in (6).
Equations (12)—(15) are valid from k=2 to k=M —1.
The boundary conditions at lower (i = 0) and upper (i =
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N,) limit walls affects to the elements of [L,,] correspond-
ing to k=1 and k= M. However, (12), (13), (14b), and
(15) are independent of these boundary conditions. In fact,
the boundary condition at the lower interface (i =0) is
taken into account through Al. Likewise, the boundary
condition at the upper interface (i = N,) will be taken into
account via B),. Next, we show the corresponding expres-
sions for A} and B}, when lower and upper limit walls are
either electric walls, magnetic walls, or open boundaries.

a) Lower interface (i =0)

electric wall:
fﬂ =% (16a)
magnetic wall:
-5 TR Y 13)]71
Ai=g1- 2k, € [smh (2k,,Heq)]
(16b)
open boundary:
—172
] [, (sinn (&, 22,)) ']
‘4:i--=g.‘.1,1_krlu 0 1 h k Hl
€0, + €. coth(k,HL, )
(16¢)

(the superscript “0” refers to the dielectric underneath the
first layer).

b) Upper interface (i= N,)

electric wall:

lew =8N,-1,N,-1 (17a)
magnetic wall:
Bllw =8&n,—L,n,-1 "Z'knfze\i';
-[sinh (2k,HY)] (17b)
open boundary: |
levl = g-Nd—1,N,,41 -k,
(- (sin (i, 2222)) |
(17¢)

eQurt+ eivg-coth(anj"qd)

(the superscript “N, +1” refers to the dielectric over the
N, th layer).

This way, (12)—(17) provide a set of recurrence formulas 10
obtain the elements of the [L,,] matrix, which can be
programmed easily in a digital computer. Finally, the
Green’s function matrix is obtained by inverting the [L,,]
matrix. Introducing these expressions in the already exist-
ing programs, without further modifications, the character-
istic parameters of arbitrarily complicated configurations
can be computed by using moment method or variational
techniques. In the following section, two useful variational
expressions are introduced, and some practical examples
will be shown later.



936

IV. VARIATIONAL EXPRESSIONS

The electrostatic energy per unit length stored in a
structure as shown in Fig. 1 can be expressed, by using
Parseval’s theorem, in the following way:

M

1 & .
e=—2——z Zpk

(n)-V,(n). (18)

From (8), (9), and (18), we can obtain two expressions
for the electrostatic energy per unit length as a function of
the surface charge density on the strips or as a function of
the potential at these interfaces

G= £ L Xl Gul)ain) (99
Uimgg & % X o) Lu(n) (). (190)

If we determine the unknowns p.(n) or V,(n), the
energy can be evaluated exactly. This is not possible in
general cases, but the stationary nature of (19a) and (19b)
allows us to get very accurate results by applying the
Rayleigh—Ritz’s optimization procedure [11], [12] and
choosing a proper set of trial functions to approximate
pr(x) or ¥V, (x). On the other hand, (19a) and (19b) permit
us to obtain upper and lower bounds on true values of the
mode capacitances for a wide variety of practical struc-
tures. For instance, consider the coupled strips with tuning
-septums studied by Itoh er al. [11]. As is well known, the
symmetry of this structure permits us to define two modes
of propagation: an even mode and an odd mode. From
(19), we can write two variational expressions for the even-
and odd-mode capacitances in the following way:

1 _U_ 1
C., 0 2a0%,

)sz( )Pl (”)

(20a)

=1

||[V]8

1
2aV2

ke °(n )Lkl(n)V °(n)

(20b)

O
By
|
||M8
M

==
Il

—

-~

£t

where Q (charge on the strips) and V' (potential of the
strips) are usually considered equal to unity. Both varia-
tional expressions provide upper bounds on their exact
values when trial functions for p%° and V>° are used. So,
(20a) leads to lower bounds on the true value of C, , and
(20b) leads to upper bounds on it. This way, through an
appropriate choice of trial functions, we can obtain accu-
rate results and their margin of error. All these consider-
ations have been taken into account to write computer
programs to analyze a great number of structures. These
programs were rigorously checked comparing our results
for simple configurations with those obtained by conformal
mapping. Some practical examples will be shown in the
next section.
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TABLE I
CAPACITANCE MATRIX OF ASYMMETRIC COUPLED STRIPS ON
SAPPHIRE SUBSTRATE AND IN VACUUM (a) OPEN STRUCTURE
AND (b) COVERED STRUCTURE

(a) Wo/h =1
bW aba S b Y, s/h = 2.
1 2 %
€ = 9.4
r XX
\ ¥ =116
t vy
. N [§] ]
wl/h cn/e,, (,22/50 le/s *n/€°l /s, ( /eﬂ
0.50 15.869 22.179 -1.437 2.357 3.096 -0.497
1.25 | 25.207 | 22.185 |-1.558 3.437 | 3.103 | -0.579
2.00 34.136 | 22,185 |-1.599 4.380 | 3.105 | -0.519
(b)
-
Eg MW oS e W h
h
1
LTI K c,,/ C, .,/ ¢/ © Jeul 0 e
1178 | Mgl % 12/ € 1178 | CppfEe] L/t
0.50 16.169 | 22,767 |-1.238 2.720 | 3.780 | -0.252
1.25 25.955 | 22.771 | -1.295 4.289 | 3.781 | -0.266
2.00 35.420 | 22.771 | -1.299 5.794 | 3.781 | -0.266

V. NUMERICAL RESULTS

Combining the general formulas presented in (19) or (20)

with (12)~(17) proposed in this work and applying subse-
quently the Rayleigh—Ritz’s procedure in a similar way to
the one reported in [4]-[6], [11], numerical data have been
generated on the quasi-static parameters of several signifi-
cant structures. )
" Before generating these numerical results, a set of ade-
quate basis functions was selected. Different choices of
basis functions were compared, and, finally, we selected a
set of functions similar to the one reported in [18], which’
includes the nature of the charge distribution and the
potential function near the edges of the strips. The method
was checked with numerical and graphic results appearing
in the literature [7]-{12], and a firm agreement was found.
Next, we will illustrate the theory with some practical
examples.

Example 1

Let us consider the pair of asymmetrical coupled micro-
strips touching a sapphire dielectric slab over a conducting
plane, as is shown in Fig. (a) of Table 1. The capacitance
matrix is easily obtained by evaluating the electrostatic
energy per unit length of this configuration when: a)
conductor 1 has charge Q and conductor 2 has charge zero,
b) conductor 2 has charge Q and conductor 1 has charge
zero, and c) both conductors have charge Q. Normalized
elements of the capacitance matrix (obtained for several
dimensions) C;; /e, are shown in this table for (a) open
and (b) covered versions. The effects of the sidewalls are
neglected when a/h>1. The capacitance matrix in
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Fig. 2. Even- and odd-mode impedances and phase velocities for sym-
metrycal coupled strips on sapphire-boron nitride substrate. Matching
points for mode phase velocities are marked with arrows.

vacuum ( Ci(}), when the dielectric is removed, has also been
tabulated. '

Example 2

This is another example of an MIC structure having
conductor strips at only one interface, but, in this case, two
dielectric layers are involved (see Fig. 2): a pair of symmet-
rical coupled strips on a double layer sapphire-boron nitride
substrate is considered. Even- and odd-mode impedances
and normalized phase velocities for two values of § versus
the %, /h ratio are represented. It must be noted that even-
and odd-mode phase velocities can be equalized by varying
the h, /h ratio. As is well known, this fact is important in
order to improve the directivity of MIC directional cou-
plers. :

Example 3

In this case, we consider two structures with conductor
strips at two different interfaces: the broadside edge-
coupled suspended microstrip lines and broadside edge-
coupled inverted microstrip lines (see Figs. 3 and 4,
respectively). However, because of their symmetry, both
structures admit four independent modes of propagation:
even—even (ee), even—odd (eo), odd-even (oe), and
odd-odd (oo) modes. Each of these modes can be treated
as independent configurations having only one strip at
only one interface by imposing the suitable boundary
conditions at the symmetry planes. So, we must evaluate
only the L,; element of the Green’s function matrix to
analyze the structure in question. Propagation parameters
versus strip width have been drawn in Figs. 3 and 4 for

937
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Fig. 3. Mode impedances and phase velocities versus strip width for
broadside edge-coupled suspended strips on boron nitride substrate.
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Fig. 4. Mode impedances and phase velocities versus strip width for
broadside edge-coupled inverted strips on boron nitride substrate.
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TABLE II
UPPER ( — ) AND LOWER (+) BOUNDS ON MODE IMPEDANCES FOR
SINGLE AND COUPLED SUSPENDED MICROSTRIPS WITH TUNING
SEPTUMS ON SAPPHIRE SUBSTRATE

(a) (b)
¥ |
t h =W =Sy g
t] t
¥ f
t
} a —t ) a -~
t/h=5 sb/h=5 - aMm=10. ¢ w94 ¢ =116
XX vy
SINGLE COUPLED PAIR
W/h Sw/h »Z(ﬂ) +|z@w - S/h Ze(fl) + Ze(ﬂ.) - Zo(ﬂ-) H Zo((l) -
0.2] 200.3 | 200.5 | 73.70 | 74.35
1.0les.87 | 90.57 | 0.6] 124.7 | 175.3 | 99.74 | 100.3
1.o| 160.3 | 161.5 | 112.4 | 112.8
0.2 0.2| 288.7 | 290.9 | 74.36 | 74.96
s.0]135.4 | 136.7 | o.6| 261.4 | 263.9 | 102.4 | 102.8
1o 2664 | 2671 | 117.8 | 1181
0.2] 65.23 | 65.27 | 34.99 | 35.02
to]33.60 | 33.62 | o6 61.61 | 61.47 |a2.11 | 42.11
)0 1.0] s8.s9 | s8.69 | 45.44 | 45.45
0.2 124.3 | 125.3 [ 40.09 | 40.12
5.0 76,13 | 7647 o6} 115.5 | 116.3 | s0.55 | s0.57
1.0| 107.3 | 107.9 | 56.06 | 56.08
"SAPPHIRE SUBSTRATE EVEN MODE ODD MODE

+ Upper bound algorithm
- Lower bound algorithm

each of these structures considering a boron nitride sub-
strate.

Example 4

Two interesting practical configurations having conduc-
tor strips at two interfaces are single and coupled sus-
pended microstrip lines with tuning septums (see Figs. (a)
and (b) in Table II). These configurations have been
analyzed by Itoh and Hebert in [11] considering an iso-
tropic substrate. In order to show the accuracy of the
method in this paper, characteristic impedances for single
and coupled configurations have been calculated by using
the variational expressions for the mode capacitances given

in (20a) and (20b). Results obtained with both algorithms -

have been tabulated in Table II. It is apparent that upper
bounds on mode capacitances (+) lead to lower bounds on
mode impedances and vice versa. Differences between data
obtained with each algorithm are always less than 1 per-
cent. Nevertheless, the lower bound algorithm is recom-
mended because it spends less computation time and it
provides more accurate results. On the other hand, Figs. 5
and 6 show impedances and normalized phase velocities
versus slit width (.S,), respectively. It must be emphasized
that even-mode. parameters can be tuned by changing S,
over a wide range of values, whereas the odd-mode ones
are only lightly affected. Moreover, it is clearly seen that,
at certain values of the slit width, phase velocities of the
even and odd mode coincide. As stated above, this phe-
nomenon is useful for directional coupler applications.
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Fig. 5. Even- and odd-mode impedances for coupled suspended strips
with tuning septums on boron nitride substrate versus slit width (S,,)
taking the distance between the strips (S) as parameter.

Fig. 7 shows the influence of the substrate anisotropy on
the characteristic parameters. Once again we can decrease
the difference between even- and odd-mode phase veloci-
ties: in this case it is clear that substrates with a high
€%, /€}, ratio can improve the directivity of directional
couplers designed with this configuration.

Finally, an interesting application of the method de-
scribed in this paper is the study of the configurations .of
which the dielectric medium has a variable dielectric con-
stant with an index gradient in the y-direction {16]. Fig. 8
illustrates the variation of the characteristic parameters for
an exponential variation of the dielectric constant for a
single suspended strip with tuning septums. In order to
apply the theory, the dielectric thickness was subdivided
inito N equal intervals of constant permittivity. To obtain
curves in Fig. 8, N = 30 was chosen: that is quite sufficient
if no abrupt variation is considered. In this case, nonuni-
form discretization is recommended.

Before concluding this section, let us note that, although
only a few simple cases have been selected to show the
applications of the method, arbitrarily complicated planar
configurations can be analyzed without increasing the com-
plexity of the computer programs.
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Fig. 6. Even- and odd-mode phase velocities for coupled suspended
strips with tuning septums on boron nitride substrate versus slit width
(S,,) taking S as parameter. Matching points for mode phase velocities
are marked with arrows.

By using the trial functions reported in [18], typical
computation time was found to be 2-3 s (CPU time) per
C,; coefficient on a VAX-11,/780 computer. When the
number of boundaries increases, CPU time also does by

approximately 0.5 s per added dielectric layer.

VI. CONCLUSIONS

In this paper, a set of simple and useful recurrence
formulas to obtain the Gtreen’s function matrix associated
with a multiconductor multidielectric planar transmission
system with rectangular generic boundary conditions are
presented. These formulas have been combined with the
variational approach in the spectral domain prev1ously
used to analyze particular configurations, and, in this ‘way,
a unlfled formulation to solve a very wide range of micro-
strip-like transmission lines embedded in anisotropic sub-
strates has been obtained. Moreover, two stationary ex-
pressions for the electrostatlc energy per unit length have
béen proposed each of them leading to an indépendent
computatlonal algorithm. In many cases, reésults obtained
by using these algorithms are upper.and lower bounds on
the exact values of the mode capacitances. So, through an
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adequate choice of trial functions, we can get very accurate
design data, and, moreover, it is-possible to known the
margin of error of them. This way, reliability of computed
values is guaranteed.
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